Experimental evidence of fluctuations and flows near marginal stability in the plasma boundary region of fusion plasmas
نویسنده
چکیده
Electrostatic turbulence has been investigated in the plasma boundary region in the JET tokamak and in the TJ-II stellarator. In both devices the naturally occurring velocity shear layer organizes itself to reach a condition in which the radial gradient in the poloidal phase velocity of fluctuations is comparable to the inverse of the correlation time of fluctuations (1/τ). This result suggests that ExB sheared flows organized themselves to be close to marginal stability (i.e. ωExB ≈ 1/τ). The investigation of the dynamical interplay between fluctuation in gradients, turbulent transport and radial electric fields has shown that these parameters are strongly coupled both in tokamak and stellarator plasmas. The bursty behaviour of turbulent transport is linked with a departure from the most probable radial gradient. The dynamical relation between fluctuations in gradients and transport is strongly affected by the presence of sheared poloidal flows, heating power and the proximity to instability thresholds: the size of large transport events decreases in the proximity of sheared flows and increases with heating power and in the proximity of instability thresholds.These results are consistent with the concept of turbulent transport self-regulated via fluctuations near marginal stability.
منابع مشابه
Experimental investigation of dynamical coupling between turbulent transport and parallel flows in the JET plasma-boundary region.
The dynamical coupling between turbulent transport and parallel flows has been investigated in the plasma boundary region of the Joint European Torus tokamak. Experimental results show that there is a dynamical relationship between transport and parallel flows. As the size of transport events increases, parallel flows also increase. These results show that turbulent transport can drive parallel...
متن کاملInverse Braking Radiation and Resonance Absorption in Corona Plasmas of Inertial Confinement Fusion
Abstract: In this paper, combining the Maxwell equations with the electron balanceequation, we obtain the inverse braking radiation absorption coefficient in a laser fusioncorona plasma. For a fixed plasma temperature, variations of the absorption coefficientversus the penetration depth into the plasma are illustrated numerically for differentvalues of laser wavelength. ...
متن کاملNumerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملExperimental Investigation of Short Scalelength Density Fluctuations in Laser-Produced Plasmas
The technique of near forward laser scattering is used to infer characteristics of intrinsic and controlled density fluctuations in laser-produced plasmas. Intrinsic fluctuations are studied in long-scalelength plasmas where we find that the fluctuations exhibit scalesizes related to the intensity variation scales in the plasma-forming and interaction beams. Stimulated Brillouin forward scatter...
متن کاملThe effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows by Lattice-Boltzmann method
The aim of this study is to investigate the effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows in the context of single relaxation time Lattice Boltzmann method (SRT-LBM). The fluid flows are simulated using regularized, no-slip, Zou-He and bounce back boundary conditions for straight surfaces in a lid driven cavity and the two-dimensional flow ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002